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Abstract – 
Scaffolds are essential temporary structures on 

construction sites. Since scaffolds are frequently 
installed and dismantled, the inspection needs to be 
performed in real-time. This paper proposes a 
framework to automate the acquisition process of 
scaffold point cloud data using a robot dog. First, a 
Simultaneous Localization and Mapping (SLAM) 
algorithm (LIO-SAM) is deployed for real-time map 
creation based on laser-based 3D data. Scaffolds are 
automatically detected using the bird’s eye view (BEV) 
projection images of the registered 3D point clouds. A 
scanning distance is also determined for each detected 
scaffold to move the robot dog to an optimal location. 
The robot dog can successfully scan the scaffolds on 
construction sites by using the proposed framework. 
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1 Introduction 
Scaffolds are an indispensable factor on construction 

sites, and it is one of the major risk factors for 
construction safety management. According to the 
statistics by the Korean Ministry of Employment and 
Labor, more than half (51.5%) of fatalities in the 
construction industry are falling accidents, and scaffolds 
are the contributing factor (19.9%) to falling fatalities [1]. 
Because scaffolds are frequently installed and dismantled 
during construction, safety management is difficult. 
Real-time inspection is ideal for a thorough inspection, 
but it rarely becomes a reality due to its labor-intensive 
and costly nature. Automating the inspection process 
using a mobile robot could be a solution for the effective 
monitoring of scaffolds. By adding repeatability to the 
labor-intensive inspection process, fast and efficient 
monitoring could become a reality. 

Kim et al. [2] proposed a framework for automatic 
scaffold segmentation and 3D reconstruction based on 
3D point clouds acquired by Mobile Laser Scanning 

(MLS). A robot dog was used in the study for the point 
cloud data acquisition process, but the robot dog was 
teleoperated. Teleoperation can reduce human labor for 
data acquisition but still requires human intervention. 
There are some studies that use autonomous operation for 
data acquisition. Kim et al. [3] used an Unmanned Aerial 
Vehicle (UAV) to make a map of the construction site for 
calculating optimal scanning points. The map was given 
to an Unmanned Ground Vehicle (UGV) for autonomous 
scanning. The UGV relied on the map for its scanning 
process.  Kim et al. [4] provided a fully automatic 3D data 
acquisition and registration system using a UGV. 2D 
SLAM was used for localization and navigation, and 3D 
reconstruction was performed based on the SLAM result. 
The study was intended to produce a general scan result 
of the construction site without specific target objects. 

This paper proposes a new framework to automate the 
data acquisition process for scaffold point clouds using a 
robot dog. The proposed framework aims to bring a 
focused attention to a specific construction component - 
scaffolds, without the need for any prior knowledge such 
as scaffold location or construction site map. This would 
enable truly dynamic and real-time scan planning, 
practically applicable in scaffold inspection. To the best 
of the authors’ knowledge, it is difficult to find previous 
studies in which a mobile robot was tried to automatically 
acquire point cloud data of specific construction objects. 
The overview of this framework is shown in Figure 1. 

2 Methodology  

2.1 System architecture 
The scanning platform for this study uses a Unitree 

A1 robot dog, with Ouster OS1-128 Mobile LiDAR and 
Microstrain Inertial Measurement Unit (IMU), and an on-
board computer (NVIDIA Jetson TX2), as described in 
Figure 2. Robot dogs can have two major advantages 
compared to wheeled robot for mobile laser scanning. 
First, robot dogs can walk stably through rough terrains 
and small obstacles. Unlike refined workspaces, 
construction sites generally have uneven surfaces, and a 
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wheeled robot’s bump can easily affect the results of 
mobile laser scanning. Second, robot dog has more 
Degree of Freedom (DoF) in joints, which can easily 
increase the Field of View (FoV) of scanning without 
additional actuators.  In our study, we controlled the roll 
and pitch simultaneously to increase the robot’s FoV as 
much as possible. 

  
Figure 1. Overview of the proposed framework 

 

 
Figure 2. Scanning platform description 

 
3D Simultaneous Localization and Mapping (SLAM) 

algorithm is used for the localization of the robot dog and 
for registration of the obtained data into a 3D point cloud 
map. The 3D point cloud map enables the robot dog to 
understand the environment, and it also works as the final 
product of the scanning process. LIO-SAM [5], a 3D 
SLAM algorithm based on sensor fusion between LiDAR 
and IMU, was used in this study.  

LIO-SAM receives 3D point cloud and IMU sensor 
data as input. LiDAR odometry is initially predicted 
based on the motion estimated by IMU data, and the IMU 
bias is repeatedly corrected based on LiDAR odometry. 
The LiDAR odometry is sent to a path planning 
algorithm for the localization of the robot dog. The 
registered 3D point cloud map is used to perform scaffold 
detection and allow the robot dog to understand the 
location of the scaffold. Figures 3(a) and 3(b) show the 
scaffolds used for the experiment and its registered point 
clouds, respectively. 

 

2.2 SLAM based BEV 3D scaffold detection 
To automate the scaffold data acquisition process, the 

robot needs to understand the goal of scanning. In this 
study, deep learning-based object detection is used to 
detect scaffolds. Understanding the environment can be 
divided into two categories: image-based and point-
cloud-based. Image-based methods are accurate and fast, 
but it lacks spatial information of the object. Point-cloud 
has very accurate spatial information but has sparse 
visual information. 3D point cloud detection also suffers 
from high computational costs. To reduce the computing 
cost, some studies attempted bird’s eye view (BEV) 
projection-based object detection [6, 7]. The main idea is 
to translate 3D point cloud into 2D images by projecting 
the points vertically, and to apply convolutional neural 
network (CNN) for object detection. This idea can detect 
objects from the 3D point cloud in real-time, but a lack 
of visual information can lower detection performance. 

 

 
Figure 3. Scaffolds at Yonsei University; (a) 

photogrammetry, (b) registered point clouds 

 
To overcome this problem, we used SLAM-based 

registered points instead of raw point cloud data to 
generate BEV images. By using registered points, the 
visual information becomes denser and can detect objects 
more accurately in real-time. In the proposed method, 
registered points are projected into 2D images, and each 
pixel value represents the height, density, and intensity 
features of the registered point. YOLOv5, a real-time 
object detection algorithm, is then applied to the 
generated BEV images [8] for detecting scaffolds. The 
scaffold detection method is shown in Figure 4. 

94



39th International Symposium on Automation and Robotics in Construction (ISARC 2022) 

2.3 Implementation  
The proposed framework was implemented using a 

robot operating system (ROS). LIO-SAM subscribes to 
sensor data from LiDAR and IMU, then publishes 
registered 3D point cloud to the BEV projection node.   
The BEV projection node projects registered point cloud 
data to 2D images and publishes them to the detection 
node. The detection node detects scaffolds from the 
subscribed images and calculates the scaffold's Cartesian 
coordinates and maximum height. To prevent 
overlapping results from the same scaffolds, detected 
scaffolds are registered only when it’s more than a 
threshold value away from each other. Maximum height 
is calculated by detecting the highest pixel inside the 
detection bounding box.  

The path planning node subscribes to the scaffold 
data, calculates the optimal scanning distance, and 
publishes the command for scanning. The optimal 
scanning distance is decided based on the FoV of the 
LiDAR and the maximum control range of the robot’s 

pitch by Eq. (1). If there is no recognized scaffold, the 
robot performs a pre-defined scanning motion to get 
more information about the environment. After the robot 
recognizes the scaffold, the robot decides the closest 
scaffold as a goal, and moves towards the scaffold until 
it reaches the optimal scanning distance. Once the robot 
reaches the scanning distance, the robot performs the 
scanning motion and moves on to the next scaffold. Fig. 
6 describes the flowchart of the path planning node. The 
control node subscribes to the published command to 
control the robot hardware. 

 
Scan distance =

Scaffold height
tan (LiDAR FoV + Maximum Pitch)

 

 

(1) 

Figure 4. Scaffold detection using the SLAM data 

Figure 5. ROS-based implementation for the proposed method 
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Figure 6. Flowchart for path planning node 

 

3 Experiments and Results 
For training the object detection model, 300 BEV 

images from scaffolds at Chung-Ang University were 
used, and 58 images from scaffolds at Yonsei University 
were used to test the model. All datasets were gathered 
by the robot dog, as conducted in [2].  Figures 7(a) and 
7(b) are examples for training and testing sets, 
respectively.  

 
 

 
Figure 7. BEV images; (a) an example for training, 

(b) an example for testing 

 

Table 1. The performance of the scaffold detection 
model 

 

The scaffold detection model is trained for 50 epochs, 
with pre-trained weights based on the COCO dataset [9]. 
Table 1 shows the performance of the scaffold detection 
model. The model achieved 86.9% precision, 73.5% 
recall, and 79.6% F1-score on scaffolds. Figure 8 shows 
an example of scaffold detection results, proving that the 
framework effectively detects scaffolds in real-time. 

 

 
Figure 8. Scaffold detection results 

 
For this experiment, we used a single scanning 

motion in which we changed the roll and pitch of the 
robot joint for 10 seconds. The scanning motion is shown 
in Figure 9. The robot dog also had a fixed region of 
interest of 30m x 30m square with the robot's starting 
point as origin. 

 

 Precision Recall F1-score 
Scaffold 86.9% 73.5% 79.6% 
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Figure 9. Scanning motion  

 
Figure 10(a) shows an example case of the robot’s 

trajectory and detected scaffolds, Figure 10(b) and 10(c) 
show the result of automatic data acquisition. As shown 
in Figure 10, the scaffold points have been successfully 
obtained. Even though there are still some limitations in 
the navigation algorithm, the experiment shows that the 
proposed framework allows the robot dog to 
automatically move around the site for the successful 
scanning of scaffolds. 

4 Conclusions 
This study proposed a new framework for automating 

the scaffold point cloud data acquisition process using a 
robot dog. The proposed framework with a real-time 3D 
scaffold detection algorithm with an SLAM-based BEV 
image was implemented for a robot dog, and it was tested 
on a real-world outdoor construction site. The 
experiments show that the robot dog can automatically 
perform the end-to-end data acquisition process without 
any human intervention.  

This study currently has some limitations in the 
navigation system. First, an obstacle avoidance system 
needs to be developed. Second, the path needs to be 
optimized. Third, the scan planning algorithm needs to be 
more generalized for a range of construction sites. With 
the improvement, the proposed method is expected to 
enable a fully autonomous operation of smart mobile 
robots designed to monitor construction sites for safety 
and productivity management. 

 

 
Figure 10. Results; (a) robot’s trajectory represented 

by the numbers and detected scaffolds with scanning 
points connected to its corresponding scaffolds by the 
same colors, (b) the 3D point cloud of the site,  (c) the 

3D point cloud of the scaffolds 
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